Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38387813

ABSTRACT

PURPOSE: Women remain underrepresented in medical physics in the United States, and determinants of persisting disparities remain unclear. Here, we performed a detailed investigation of American Association of Physicists in Medicine (AAPM) membership trajectories to evaluate trends in Full membership with respect to gender, age, and highest degree. METHODS AND MATERIALS: Membership data, including gender, date of birth, highest degree, membership type, and years of active membership for 1993 to 2023 were obtained from AAPM. Group 1 included Full members who joined AAPM in 1993 or later. A subset of group 1 including only members who joined and left AAPM since 1993 (former members, group 1F) was used to calculate age at membership cessation and duration. Results were compared by gender and highest degree. A Kaplan-Meier analysis was also used to evaluate membership "survival" by age and highest degree. RESULTS: Complete data were available for 6647 current and former Full members (group 1), including 2211 former members (group 1F). On average, women became Full members at a significantly younger age than men (34.6 vs 37.5 years of age, P < .001) and ended their memberships (if applicable) at a significantly younger age than men (46.1 vs 50.1 years of age, P < .001). The Kaplan-Meier "survival" analysis showed that for a given age, women were at a significantly greater risk of membership cessation than men, and women with master's degrees had the lowest membership survival of any gender/degree subgroup. When analyzing by membership duration, there was no difference in survival by gender alone. Still, women with PhDs were found to have the greatest membership survival among gender/degree subgroups. CONCLUSIONS: Both gender and degree type influenced AAPM membership trajectories. Although we have offered a discussion of possible explanations, qualitative data collected from both continuing and departing AAPM members will be critical in the ongoing journey toward gender parity in the profession of medical physics.

2.
Adv Radiat Oncol ; 8(1): 101057, 2023.
Article in English | MEDLINE | ID: mdl-36213550

ABSTRACT

Purpose: While disparities in the inclusion and advancement of women and minorities in science, technology, engineering, mathematics, and medical fields have been well documented, less work has focused on medical physics specifically. In this study, we evaluate historical and current diversity within the medical physics workforce, in cohorts representative of professional advancement (PA) in the field, and within National Institutes of Health (NIH)-funded medical physics research activities. Methods and Materials: The 2020 American Association of Physicists in Medicine (AAPM) membership was queried as surrogate for the medical physics workforce. Select subsets of the AAPM membership were queried as surrogate for PA and early career professional advancement (ECPA) in medical physics. Self-reported AAPM-member demographics data representative of study analysis groups were identified and analyzed. Demographic characteristics of the 2020 AAPM membership were compared with those of the PA and ECPA cohorts and United States (US) population. The AAPM-NIH Research Database was appended with principal investigator (PI) demographics data and analyzed to evaluate trends in grant allocation by PI demographic characteristics. Results: Women, Hispanic/Latinx/Spanish individuals, and individuals reporting a race other than White or Asian alone comprised 50.8%, 18.7%, and 32.4% of the US population, respectively, but only 23.9%, 9.1%, and 7.9% of the 2020 AAPM membership, respectively. In general, representation of women and minorities was further decreased in the PA cohort; however, significantly higher proportions of women (P < .001) and Hispanic/Latinx/Spanish members (P < .05) were observed in the ECPA cohort than the 2020 AAPM membership. Analysis of historical data revealed modest increases in diversity within the AAPM membership since 2002. Across NIH grants awarded to AAPM members between 1985 and 2020, only 9.4%, 5.3%, and 1.7% were awarded to women, Hispanic/Latinx/Spanish, and non-White, non-Asian PIs, respectively. Conclusions: Diversity within medical physics is limited. Proactive policy should be implemented to ensure diverse, equitable, and inclusive representation within research activities, roles representative of PA, and the profession at large.

3.
Inorg Chem ; 58(5): 3457-3465, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30788962

ABSTRACT

The reaction of SmI2 with dibenzo-30-crown-10 (DB30C10), followed by metathesis with [Bu4N][BPh4], allows for the isolation of [SmII(DB30C10)][BPh4]2 as bright-red crystals in good yield. Exposure of [Sm(DB30C10)]2+ to solvents containing trace water results in the conversion to the dinuclear SmIII complex, Sm2(DB30C10)(OH)2I4. Structural analysis of both complexes shows substantial rearrangement of the crown ether from a folded, Pac-Man form with SmII to a twisted conformation with SmIII. The optical properties of [SmII(DB30C10)][BPh4]2 exhibit a strong temperature dependence and change from broad-band absorption features indicative of domination by 5d states to fine features characteristic of 4f → 4f transitions at low temperatures. Examination of the electronic structure of these complexes via ab initio wave function calculations (SO-CASSCF) shows that the ground state of SmII in [SmII(DB30C10)]2+ is a 4f6 state with low-lying 4f55d1 states, where the latter states have been lowered in energy by ∼12 000 cm-1 with respect to the free ion. The decacoordination of the SmII cation by the crown ether is responsible for this alteration in the energies of the excited state and demonstrates the ability to tune the electronic structure of SmII.

SELECTION OF CITATIONS
SEARCH DETAIL
...